Rozansky-Witten Weight Systems

نویسنده

  • Justin Roberts
چکیده

The pairing can be viewed as giving families of invariants of hyperk\"ahler manifolds or as giving families of 3-manifold invariants. In the first approach, one hopes to derive theorems about the geometry of hyperk\"ahler manifolds (this has been initiated by Hitchin and Sawon). In the second approach, the invariants obtained are finite-type invariants, so their computation factorises into two parts: the computation of the universal finite type invariant of the knot or 3-manifold (Kontsevich integral or LMO invariant) and then the application of a weight system defined by the hyperk\"ahler manifold (and bundle, if necessary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rozansky-witten Theory

Rozansky and Witten proposed in 1996 a family of new three-dimensional topological quantum field theories, indexed by compact (or asymptotically flat) hyperkähler manifolds. As a byproduct they proved that hyperkähler manifolds also give rise to Vassiliev weight systems. These may be thought of as invariants of hyperkähler manifolds, so the theory is of interest to geometers as well as to low-d...

متن کامل

A new weight system on chord diagrams via hyperkähler geometry

A weight system on graph homology was constructed by Rozansky and Witten using a compact hyperkähler manifold. A variation of this construction utilizing holomorphic vector bundles over the manifold gives a weight system on chord diagrams. We investigate these weights from the hyperkähler geometry point of view.

متن کامل

A new weight system on chord diagrams

A weight system on graph homology was constructed by Rozansky and Witten using a compact hyperkk ahler manifold. A variation of this construction utilizing holomorphic vector bundles over the manifold gives a weight system on chord diagrams. We investigate these weights from the hyperkk ahler geometry point of view.

متن کامل

Topological quantum field theory and hyperkähler geometry

where we regardX as a complex manifold with respect to some choice of complex structure compatible with the hyperkähler metric (precisely how these spaces depend on this choice is a subtle matter). ForX a K3 surface, Rozansky and Witten investigated the cases g = 0 and g = 1, and exhibited an action of the mapping class group in the latter case. There is a modified TQFT constructed by Murakami ...

متن کامل

Generalisations of Rozansky-Witten invariants

We survey briefly the definition of the Rozansky-Witten invariants, and review their relevance to the study of compact hyperkähler manifolds. We consider how various generalisations of the invariants might prove useful for the study of non-compact hyperkähler manifolds, of quaternionic-Kähler manifolds, and of relations between hyperkähler manifolds and Lie algebras. The paper concludes with a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000